

Bioprinting of a vascularized scaffold for nerve tissue engineering

Mentor: Marie-Noëlle Labour ^{1,2,*}

¹ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier, France; ²Ecole Pratique des Hautes Etudes, paris, France *marie-noelle.labour@enscm.fr

Tissue engineering				Medical context	
Active molecules: grantibodies, small mo	owth factors, lecules	Biomaterials: co processing, P	omposition, roperties: Geometry, Porosity, Mechanical properties, Degradability and	Spinal Cord Injury Axons damaged Inflammation	<section-header><section-header></section-header></section-header>

Prevascularization: bioprinting of

Process by stereolithography (STL): high resolution, quick, and versatile, mild conditions ³

Bionova X 3D printer

endothelial cells

Graft survival and integration ⁶

Schwann cells: secretion of growth factors and extracellular matrix ^{4,5}

Oriented axonal growth

Objective: Generate a biomimetic prevascularized scaffold

Bioprinting and scaffold characterization

Cells viability and vascularization

Viability analysis overtime

- Live-dead staining
- Metabolic activity assay

Self organisation, vessel-like structure formation

Cell staining and observation

 \checkmark Light intensity

Scaffolds characterizations

• Structure and porosity analysis using optical and electron Microscopy

Macroscopic view

Microscopic view

with confocal microscopy (MRI platform)

 $1\,\mathrm{mm}$ *Top view of a multichannel* scaffold, phalloidin staining

Sde view of a channel, phalloidin and DAPI staining

REFERENCES 1. N. Ashammakhi, et al., Tissue Eng Part B Rev 25(6) (2019) 471-491. **2.** K. Dalamagkas, et *al.*, Int J Mol Sci 19(6) (2018). **3.** N.Y. Kostina, *et al.*, Macromol Biosci 19(4) (2019). **4.** M.J. Barton, *et al.*, Int J Mol Sci 18(2) (2017). **5.** Deumens, *et al.*, Neuroscience 125(3) (2004) 591-604. **6.** A. Dellaquila , *et al.,* Adv. Sc. 8(19) (2021).

Chimie Montpellier