

Toward integrated photonic sensors

Mentors:

Jean-Baptiste Rodriguez, CNRS scientist ; Eric Tournié, Professor (jean-baptiste.rodriguez@cnrs.fr; eric.tournie@umontpellier.fr)

OBJECTIVE

Develop the building blocks needed for integrated mid-infrared photonic sensors

CONTEXT

1)Environment monitoring, climate change, industrial process supervision, food storage, etc., all call for the deployment of high sensitivity integrated photonic sensors.

CHALLENGES

One needs to integrate light sources, waveguides, modulators, photodetectors, etc., on the same chip/platform: photonic integrated circuits.

Silicon-based materials used in microelectronics (Si, SiN, SiO₂, (Si)Ge), cannot emit light, but they can be used as waveguides.

2) The atmosphere has transparence windows in the **mid-infrared** wavelength range of the electromagnetic spectrum, and many molecules have their **fingerprint** in this region.

Light emitters are made with so-called **III-V semiconductors**, *i.e.* GaN, GaAs, InP, GaSb, etc.

Dissimilarities between these materials families generate crystal defects when growing III-Vs on Silicon, which degrade devices performances. This **problem** is only **partly solved**.

If Si photonics is the most wanted, other photonic platforms are possible: III-V (GaSb) or chalcogenide (GeSeTe) materials can also be used.

Mid-infrared lasers grown on Silicon

Light – current – voltage characteristics and emission spectra of GaSb DLs grown on Silicon.

Mid-infrared interband- and quantum- cascade lasers have also been grown on Silicon.

See, Tournié et al., Light: Science & Applications 11 (2022) 165, doi:10.1038/s41377-022-00850-4 and references therein.

First laser on a photonic integrated circuit

See, Remis et al., Light: Science & Applications 12 (2023) 150, doi:10.1038/s41377-023-01185-4.

THE WORK

Much work remains to be done before a real sensor is demonstrated.

Depending on his/her skills and aspirations, the candidate will be involved in:

THE ENVIRONMENT AND FACILITIES

The work will be carried out in the nanoMIR group of IES, a joint research unit between U. Montpellier and CNRS. NanoMIR is a world leader in mid-infrared optoelectronic devices, and it has achieved a number of breakthroughs in the integration of mid-IR lasers on silicon.

- Modeling of the photonic devices (lasers, waveguides, photodetectors).
- The epitaxy of laser and photodetector heterostructures.
- The processing of the epitaxial wafers.
- The processing of the photonic platform.
- The electro-optical studies of the discrete and integrated devices.

IES is equipped with molecular-beam epitaxy systems dedicated to the growth of semiconductor heterostructures, and with material and device characterization setups. The devices are fabricated in the 400m² clean room of the university located in the same premises as nanoMIR.

The candidate will be fully immersed in a team of \sim 3 permanent staffs and 3 PhD candidates.

The project is supported by the France 2030 initiative through Equipex EXTRA (ANR11-EQPX-0016) and Equipex+ HYBAT (ANR21-ESRE-0026)

