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CONTEXT OBJECTIVES AND METHODS

Lakes, both natural lakes and reservoirs, contain Objectives: develop tools for the management of lake ecosystems.

most of the freshwater available on Earth. Flows More precisely the objectives are:

of nutrients and pollutants coming from human e the simulation of the lake ecosystem, for a better understanding of the dynamics
activities have a major impact on aquatic ecosys- e the short-term prediction (early warning system) of cyanobacterial blooms

tems. Water quality is deteriorating, biodiver- e the assesment of climate change impact on the dynamics of lake ecosystem

sity is declining and the ecosystem services pro- Methods: use of thermal-hydro-ecological models (1D to 3D) which takes into account:
vided by lakes (drinking water, fish resources, e the hydrodynamics of the Lake, that is the fluid dynamics;

landscape, recreational activities ....) are affected. e the dynamics of the lake ecosystem, especially of the cyanobacterial population.

According to the European Environment Agency
(EEA), only 40% of European surface water bod-
ies had a good or high ecological status in 2018 KEY FACTORS RESPONSIBLE FOR CYANOBACTERIAL BLOOMS
(Kristensen et al. 2018).

In addition to anthropogenic pollution, lake
ecosystems are subject to climate change. Sev-
eral studies have highlighted the impact of global

warming on lake thermal stratification and water
temperature over the past few decades. Because Precipitation —
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these blooms, global warming is also involved.
Cyanobacteria are favoured by warm water tem-
peratures and low turbulence in the water col-
umn during more frequent or longer thermal
stratification episodes. In addition, in certain

hydro-climatic regions, climate change can in- (Hlustration by R. P. Rastogi, taken from (Rastogi et al 2015)).
duce more abundant rainfall, which can lead to

an increase in the flow of nutrients from water-
sheds or groundwater, DATA ASSIMILATION MACHINE LEARNING

How can we improve model prediction by inte- How can we combine knowledge based-model

MODEL CALIBRATION grating in real time new observed data? and machine learning to improve the quality of

the predictions?
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MODIS-retrieved SSC on December 16, 2020 WCCM-CSTM simulated SSC at 10:30 December 16, 2020

Satellite image (left) and model simulations
(right). (Wu, et al. 2022)
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farr: machine learning model; fpgy: physics-
based model. (Willardet al 2022)
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