

Synchronized EEG-fNIRS for Enhanced Brain Source Validation in real settings

Stéphane Perrey¹, Binbin Xu¹, Gérard Dray¹, Jochen Baumeister²

- ¹ EuroMov Digital Health in Motion, Université de Montpellier, IMT Mines Alès, Montpellier France
- ² Exercise Science & Neuroscience Unit, Faculty of Science, Paderborn Univ Paderborn, Germany

1 INTRODUCTION - RESEARCH QUESTION

Together, electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) offer a **multimodal approach** that addresses the weaknesses of each method, enabling more accurate and robust brain mapping in **naturalistic settings** (rehabilitation, sport, movement).

How can the integration of mobile EEG and fNIRS, enhanced **by machine learning**, improve the accuracy and ecological validity of brain source localization and brain measures/biomarker classification during real-world environments?

2 AIMS OF THE INTERNSHIP

Establish the feasibility and validity of synchronized mobile EEG-fNIRS in real-world settings.

Objective: Deploy and evaluate the technical stability, signal quality, and usability of a mobile EEG-fNIRS system during dynamic physical activity.

Outcome: Demonstrate reliable multimodal data collection under real-world movement conditions.

Enhance cortical source localization through multimodal data fusion.

Objective: Develop and validate algorithms that combine EEG's temporal precision with fNIRS's spatial accuracy to improve cortical source mapping.

<u>Outcome</u>: Achieve significantly improved spatial resolution and specificity in identifying brain activation patterns compared to EEG alone.

Apply machine learning to classify cognitive states from fused EEG-fNIRS data.

Objective: Train and evaluate machine learning models to detect brain measures/biomarkers during sports performance using integrated multimodal features.

<u>Outcome</u>: Create predictive models capable of real-time classification with high accuracy, enabling adaptive feedback systems.

(3) INTERNSHIP KEY POINTS

By combining EEG and fNIRS ML techniques can improve source localization and pattern recognition, enabling deeper insights into cognitive states \rightarrow enables advanced predictive modeling of brain activity, in complex and dynamic environments.

- Exercise Neuroscience
- · Brain monitoring assessment
- Machine learning & time series
- · Applied interdisciplinary work

ABOUT SUPERVISION

The internship will be supervised by a mixed team from the *EuroMov Digital Heah in Motion* and *Exercise science & Neuroscience* Research Units specialists in human movement, neuroscience and machine learning applied to brain signals

References

Arif A, Wang Y, Yin R, Zhang X, Helmy A. EF-Net: Mental State Recognition by Analyzing Multimodal EEG-fNIRS via CNN. Sensors (Basel). 2024;24(6):1889. doi: 10.3390/s24061889.

Bunterngchit C, Wang J, Hou ZG. Simultaneous EEG-fNIRS Data Classification Through Selective Channel Representation and Spectrogram Imaging. *IEEE J Transl Eng Health Med.* 2024;12:600-612. doi: 10.1109/JTEHM.2024.3448457.

Phukhachee T, Angsuwatanakul T, Iramina K, Kaewkamnerdpong B. A simultaneous EEG-fNIRS dataset of the visual cognitive motivation study in healthy adults. *Data Brief.* 2024;53:110260. doi: 10.1016/j.dib.2024.110260.

Contacts

- <u>stephane.perrey@umontpellier.fr</u>
- binbin.xu@mines-ales.fr gerard.dray@mines-ales.fr
- iochen.baumeister@uni-paderborn.de